首页  /  发现  /  思想  /  正文

中国严寒地区国土空间规划气候适应性评价清单

景观设计学 2023-06-14 来源:景观设计学
原创
本文构建了中国严寒地区城市空间的气候适应性评价指标体系,并以哈尔滨中心城区为例进行气候适应性的时空分异评价。
注:本文为删减版,不可直接引用。原中英文全文刊发于《景观设计学》(Landscape Architecture Frontiers)2022年第4期"跨境景观本土化"。获取全文免费下载链接请点击https://journal.hep.com.cn/laf/EN/10.15302/J-LAF-1-020062;参考引用格式见文末。


导 读

气候适应性研究应该同时涵盖气候变化与地域气候背景两方面因素。从城市空间角度进行气候适应性的研究并对其展开评价,有助于明确城市空间建设在应对气候问题方面的薄弱环节。本文构建了中国严寒地区城市空间的气候适应性评价指标体系,并以哈尔滨中心城区为例进行气候适应性的时空分异评价。结果表明,研究区域城市空间的综合气候适应性能力在2008~2017年间基本呈提升趋势,但总体仍处于较低水平,同时各市辖区的气候适应性存在较为显著的空间差异和要素发展不均衡现象。本研究将为未来中国开展严寒地域气候背景下的国土空间规划体系编制、气候适应性专项规划研究等提供一定的参考,进而推动中国严寒地区城市的气候适应性建设,也对中国正在开展的气候适应型城市建设试点工作具有积极的借鉴意义。


关键词

严寒地区;城市空间;气候适应性;评价指标体系;适应策略



中国严寒地区城市空间的气候适应性评价指标体系构建研究

——以哈尔滨市中心城区为例

Construction of Climate Adaptability Evaluation Indicator System for Urban Spaces in the Severe Cold Zones of China—A Case Study on the Central Area of Harbin


 作 者

蒋存妍1,2,冷红1,2,袁青1,2

1 哈尔滨工业大学建筑学院
2 哈尔滨工业大学寒地国土空间规划与生态保护修复重点实验室


研究背景

由于气候系统的惯性,气候变化将带来持久的影响。为此,政府间气候变化专门委员会(IPCC)指出,在未来的一段时间内,应将气候适应作为应对气候变化的重要手段,且城市属于实行气候适应措施的重要作用区域。

界定和评价不同城市的气候适应性是城市开展适应性规划和决策制定的基础。近年来,相关领域学者主要通过两种途径对城市气候适应性进行评价研究:1)评价气候适应行动方案;2)评估城市空间要素与气候要素的相互作用。第一种途径关注政府部门主导的气候适应行动,重在评价行动的经济和生态效益,目前已成为国内外气候适应性规划体系主流做法的一部分;第二种途径主要衡量城市空间要素能否以及如何适应不断加剧的气候变化。然而,目前国内外从城市空间视角展开系统性气候适应性评价的研究仍十分有限,且尚未建立针对城市空间的气候适应性评价体系。

城市气象学家蒂姆·奥克(Tim Oke)认为,不同地域所遭受的气候变化影响存在较大差别,因此气候适应性研究应同时涵盖气候变化与地域气候两方面因素。目前,国内外应对气候变化的城市空间规划研究日趋增多,然而基于地域气候背景探究气候适应性规划应对机制的研究十分有限,以地域气候适应为切入点展开的相关研究几近空白。立足地域气候背景评价城市空间的气候适应性,有助于明确城市空间建设在应对气候问题方面的薄弱环节。

本文旨在构建中国严寒地区(即累年最冷月平均温度不高于-10°C的地区)城市空间的气候适应性评价指标体系,并以典型严寒地区城市哈尔滨的中心城区为例,针对评价结果提出相关对策,以期为未来中国严寒地区城市制定气候适应性规划和建设决策提供支撑。


中国严寒地区城市空间的气候适应性

研究团队总结了基于严寒气候与气候变化背景的城市空间气候问题的特殊性,并据此解析严寒地区城市空间气候适应性的内涵,进而提出了严寒地区城市空间应对气候问题的途径。

图片

城市规划的核心内容之一是对城市物质空间要素(如土地利用、道路交通、城市建筑和绿地及开放空间)进行布局,而合理的布局与设计可以增强城市对气候问题的适应能力。因此,从城市空间的角度研究气候适应性规划,是气候适应与城市规划的重要结合点。

IPCC将应对气候变化和极端天气事件的适应策略分为三类:保护(protection)、适应性调节(accommodation)和计划性撤退(managed retreat)。立足地域气候与气候变化的双重背景,本文将这三类适应策略的应用场景在城市空间层面进行了延伸,界定了严寒地区城市空间的三类气候适应性途径,即保护修复、适应性调节、计划性撤退。

图片

严寒地区城市空间的气候问题特征、城市空间要素与气候适应性途径的相互作用关系 © 蒋存妍,冷红,袁青

1)保护修复。采取工程措施保护城市内易受影响的城市空间,保障重要的社会服务和居民基本的生产生活。此外,还需要修复已经受到影响的空间,通过干预措施将其调整为外界干扰胁迫之前的城市系统状态。在本研究中,这类途径主要包括对城市能源消耗量大的交通、建筑产业进行节能修复;对易受冬季严寒气候影响的城市系统进行气候防护或保护等。

2)适应性调节。当气候变化趋势加剧但负面影响较轻时,依靠城市系统自身的韧性或自适应机制而不另外施加适应措施,就能有效调节气候变化所带来的影响,实现城市的照常运转。在本研究中,这类途径主要包括重点保障冬季城市交通的运行效率,增加绿地及开放空间以提升土壤及植被的碳汇和微气候调节功能等。

3)计划性撤退。当受到的胁迫超过自适应与人为适应能力之和时,应对气候脆弱性或风险性较大的城市空间进行撤退,以减少气候问题所带来的负面影响。在本研究中,这类途径主要包括冬季气候灾害发生时城市的预警及应急处理,以及为应对不利的冬季气候影响而进行的城市系统转型(如植被置换)等。


中国严寒地区城市空间气候适应性评价指标体系的建立

本文基于文献研究——参考世界其他严寒地区城市空间与气候环境相关性研究成果、发达国家寒地城市气候调节政策,同时借鉴城市气候承载力、气候变化脆弱性等评价指标体系的构建过程——并综合考虑数据的可获得性,通过相关类目合并、系列相关剔除等步骤,最终确定了21项评价指标。

图片

根据各项评价指标的不同属性,通过以下三种途径为各指标赋值。

1)若评价指标在规划、法律条令、管理规定中已有明确的定义和计算方式,则据此方式计算获取指标的数值。

2)对于自身没有明确定义和计算方式、但可获取相似指标明确量化要求的评价指标,依据相似指标推断该指标的参考值。

3)对于暂无明确计算方式的指标(即定性指标),依据指标内涵或横向比较年度指标值的方式,将指标赋值划分为三个等级(如低-中-高、不全面-中等-全面)。

由于本评价体系中同时包含定性及定量指标,构成具有一定的复杂性,因此采用主客观综合集成赋权法确定评价指标的权重。研究将权重值高于平均水平的指标确定为严寒地区城市空间气候适应性主因子,共8项——室内步行系统覆盖率、建筑清洁取暖率、用地兼容性、轨道交通出行比例、冬季交通运行指数、绿化覆盖率、城市通风廊道建设水平,以及城市应急通道网络覆盖率。


哈尔滨城市空间气候适应性动态分析

依托中国严寒地区城市空间气候适应性评价指标体系,本研究选取典型严寒地区城市哈尔滨,并以其中心城区为研究对象,基于相关统计及空间数据,对研究区域城市空间开展气候适应性评价。

哈尔滨地处中国东北平原东北部,是东北地区的交通、政治、经济、文化、金融中心,同时也是中国纬度最高、冬季气温最低的特大城市。哈尔滨的中心城区范围涵盖南岗区、道里区、香坊区、道外区、平房区、松北区的全部,以及呼兰区、双城区、阿城区的部分区域,总面积约4187km2。

图片

图片

哈尔滨中心城区城市空间的气候适应性动态变化 © 蒋存妍,冷红,袁青

在此期间,随着国家及地方相关政策陆续出台,城市社会经济稳步发展;相关部门逐步意识到增强城市空间气候适应性的重要性,并在城市建设的各方面采取了积极的应对措施,对生态环境治理的投入也有所增加。相应地,研究区域城市空间的3项气候适应性能力和综合气候适应性能力基本呈现上升的趋势。然而,研究年份内,研究区域的交通出行及工业企业建筑能源消耗量大、城市空间形态不紧凑、绿地碳汇系统薄弱等问题均较为突出,三项气候适应性能力和综合气候适应性能力的分值都较低。与此同时,综合气候适应性能力的得分也呈现出较大波动,且直至2017年才由负转正。


哈尔滨城市空间气候适应性的空间分布特征

本研究将研究区域以主干路、快速路及镇域边界等为界,划分为48个片区单元,依据2017年(研究年份的最后一年)各项指标的数据值,为各单元气候适应性评价指标赋值用于开展空间分析。本研究在ArcGIS10.3软件中采用Kriging插值势能分析绘制了研究区域气候适应性的空间分布地图,并借助ArcGIS10.3软件中常用的自然断点分级法将评价结果划分为7级,以更清晰地反映研究区域气候适应性的空间分布特征。

图片

哈尔滨中心城区保护修复能力空间分布 © 蒋存妍,冷红,袁青

图片

哈尔滨中心城区适应性调节能力空间分布 © 蒋存妍,冷红,袁青

图片

哈尔滨中心城区计划性撤退能力空间分布 © 蒋存妍,冷红,袁青

图片

综合气候适应性能力空间分布 © 蒋存妍,冷红,袁青

哈尔滨中心城区城市空间的综合气候适应性评分较低,得分为正值的用地面积不足总面积的1%。得分低于-0.4分的区域占总研究区域用地面积的70%以上。同时,各市辖区的气候适应性存在较为显著的空间差异和要素发展不均衡现象,研究区域北部的气候适应性普遍优于南部,主城区的气候适应性性优于其他区域,总体呈现由城市中心向外放射的空间分布格局。


国土空间规划气候适应性提升策略应对与未来展望

严寒地区气候条件复杂、易受气候变化影响。本研究的城市空间气候适应性评价工作所依托的数据为2008~2017年,随着国家及地方政策的不断出台,近年部分评价指标(如建筑清洁取暖率、轨道交通出行比例)已有大幅提升,城市空间的气候适应性能力得到一定程度提升。未来,应进一步完善城市轨道交通建设、优先保障城市冬季交通运行效率、构建城市通风廊道等措施,逐步提升城市空间的气候适应性。由此,将气候适应理念纳入国土空间规划编制过程,并制定具有前瞻性的气候适应规划和协同政策设计,是提升中国严寒地区城市空间气候适应性的关键。

640.png

由于城市系统自身的复杂性,不同规模的城市面对的气候适应性问题差异很大。本研究旨在探索中国严寒地区城市空间的气候适应性评价指标体系构建与应用,在指标体系的设计及运算方法方面还存在改进的空间。例如,未来应当结合特定的气候风险提出更具针对性的评价指标,探讨除线性加权和法以外更为科学的指标运算方法,并在中国其他严寒地区城市进行评价验证、展开气候适应性的对比研究等。



参考文献

[1] IPCC. (2007). Summary for Policymakers. In Climate Change 2007: The Physical Science Basis Climate. Cambridge University Press.
[2] Aylett, A. (2015). Institutionalizing the urban governance of climate change adaptation: Results of an international survey. Urban Climate, (14), 4-16. doi:10.1016/j.uclim.2015.06.005
[3] Lysák, M., & Bugge-Henriksen, C. (2016). Current status of climate change adaptation plans across the United States. Mitigation and Adaptation Strategies for Global Change, 21(3), 323-342. doi:10.1007/s11027-014-9601-4
[4] IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability.
[5] City of Copenhagen. (2011). Copenhagen climate adaptation plan.
[6] Bendall, S. (2018). Clifton to Tangoio coastal hazards strategy 2120: Report of the northern and southern cell assessment panels.
[7] City of Vancouver, & Sustainability Group. (2018). Climate change adaption strategy—2018 update and action plan.
[8] Government of Québec. (2012). 2013-2020 Government Strategy for Climate Change Adaptation.
[9] Moser, C., & Stein, A. (2011). Implementing urban participatory climate change adaptation appraisals: A methodological guideline. Environment and Urbanization, 23(2), 463-485. doi:10.1177/0956247811418739
[10] de Bruin, K., Dellink, R. B., Ruijs, A., Bolwidt, L., van Buuren, A., Graveland, J., de Groot, R., Kuikman, P., Reinhard, S., Roetter, R. P., Tassone, V. C., Verhagen, A. & Van Ierland, E. C. (2009). Adapting to climate change in The Netherlands: An inventory of climate adaptation options and ranking of alternatives. Climatic Change, 95(1), 23-45. doi:10.1007/s10584-009-9576-4
[11] Preston, B. L., Westaway, R. M., & Yuen, E. J. (2011). Climate adaptation planning in practice: An evaluation of adaptation plans from three developed nations. Mitigation and Adaptation Strategies for Global Change, 16(4), 407-438. doi:10.1007/s11027-010-9270-x
[12] Baker, I., Peterson, A., Brown, G., & McAlpine, C. (2012). Local government response to the impacts of climate change: An evaluation of local climate adaptation plans. Landscape and Urban Planning, 107(2), 127-136. doi:10.1016/j.landurbplan.2012.05.009
[13] Hamin, E. M., & Gurran, N. (2009). Urban form and climate change: Balancing adaptation and mitigation in the US and Australia. Habitat International, 33(3), 238-245. doi:10.1016/j.habitatint.2008.10.005
[14] Stone Jr., B., & Rodgers, M. O. (2001). Urban form and thermal efficiency: How the design of cities influences the urban heat island effect. Journal of the American Planning Association, 67(2), 186. doi:10.1080/01944360108976228
[15] Stone Jr., B., & Norman, J. M. (2006). Land use planning and surface heat island formation: A parcel-based radiation flux approach. Atmospheric Environment, 40(19), 3561-3573. doi:10.1016/j.atmosenv.2006.01.015
[16] Stone Jr., B., Hess, J. J., & Frumkin, H. (2010). Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities?. Environmental Health Perspectives, 118(10), 1425-1428. doi:10.1289/ehp.0901879
[17] Dugan, A. J., Birdsey, R., Mascorro, V. S., Magnan, M., Smyth, C. E., Olguin, M., & Kurz, W. A. (2018). A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Carbon Balance and Management, 13(1), 13. doi:10.1186/s13021-018-0100-x
[18] Salagnac, J., Desplat, J., Kounkou-Arnaud, R., Lemonsu, A., & Masson, V. (n. d.). Assessment of Adaptation Strategies to Climate Change Impacts in a Big City: The Case of Paris. Fraunhofer IRB data base.
[19] Schmidt-Thomé, P., & Greiving, S. (2013). Introducing the pan-European approach to integration on climate change impacts and vulnerabilities into regional development perspectives. European Climate Vulnerabilities and Adaptation: A Spatial Planning Perspective, 1-4. doi: 10.1002/9781118474822.ch1
[20] Jiang, C., Yuan, Q., & Yu, T. (2021). International experience and implications of dynamic adaptive planning for urban response to climate change uncertainty. International Urban Planning, (10), 13-22. doi:10.19830/j.upi.2021.346
[21] Jiang, L., Liu, S., & Liu, C. (2021). The contributions of blue-green infrastructure to building urban climatic resilience—Bibliometric analysis based on co-citation networks. Landscape Architecture Frontiers, 9(6), 8-23. doi:10.15302/J-LAF-1-020057
[22] Oke, T. R. (2002). Urban Heat Islands: An Overview of the Research and Its Implications. In North American Heat Islands Summit. Toronto, Canada.
[23] Unger, J. (2004). Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Climate Research, 27(3), 253-264. doi:10.3354/cr027253
[24] Golany, G. S. (1996). Urban design morphology and thermal performance. Atmospheric Environment, 30(3), 455-465. doi:10.1016/1352-2310(95)00266-9
[25] Yuan, Z., Wu, X., Zang, S., Wu, C., & Li, M. (2017). Cooling effect of green patches based on TM image in Harbin downtown city. Scientia Geographica Sinica, 37(10), 1600-1608. doi:10.13249/j.cnki.sgs.2017.10.018
[26] Collymore, P., & Erskine, R. (1994). The Architecture of Ralph Erskine (2nd ed., pp. 23-29). Wiley.
[27] Gehl, J. (1992). A good city for all seasons. Winter Cities. 10(3), 18.
[28] Pressman, N. (1995). Northern Cityscape: Linking Design to Climate. Yellowknife.
[29] Yan, T., & Jin, H. (2020). A WRF/UCM-based numerical study of urban heat island in severe cold region. Buiding Science, 36(8), 107-113. doi:10.13614/j.cnki.11-1962 /tu.2020.08.15
[30] Zhang, X., Lou, D., Wei, S., & Lan, B. (2007). Characteristics of Winter Temperature Changes in Harbin and Their Effects. In Proceedings of the Climate Change Session of the 2007 Annual Meeting of the Chinese Meteorological Society (pp. 562-566). Chinese Meteorological Society.
[31] Leng, H., Guo, E., & Yuan, Q. (2003). The study on the climate sensitive urban design. City Planning Review, 27(9), 49-54.
[32] Zhang, W., & He, L. (2009). Urban planning and design responding to climate changes: Frontiers and enlightenment to China. City Planning Review, 33(9), 38-43.
[33] Ministry of Housing and Urban-Rural Development of the PRC. (2017). Code for Thermal Design of Civil Building (GB50176—2016)
[34] Leng, H., & Yuan, Q. (2008). Scientific concepts of livable city construction under severe cold climate. City Planning Review, (10), 26-31.
[35] Cai, Y., & Wen, Z. (2017). Climate adaptability planning technology for urban resilience promotion. Planners, 33(8), 18-24.
[36] Williams, A. T., Rangel-Buitrago, N., Pranzini, E., & Anfuso, G. (2018). The management of coastal erosion. Ocean & Coastal Management, (156), 4-20. doi:10.1016/j.ocecoaman.2017.03.022
[37] Fu, X. (2020). Measuring local sea-level rise adaptation and adaptive capacity: A national survey in the United States. Cities, (102), 102717. doi:10.1016/j.cities.2020.102717
[38] Yan, W. (2013). Mitigation adaptation—Research agendas in urban planning responding to climate change. Journal of Human Settlements in West China, (3), 31-36. doi:10.13791/j.cnki.hsfwest.2013.03.012
[39] Peng, Z., & Lu, Q. (2010). Adaptation planning for climatic change and extreme weather events. Modern Urban Studies, (1), 7-12.
[40] Zheng, D. (2016). Implications, mechanisms and technological approaches for climate change adaptation. Northern Economy, (3), 73-77.
[41] Matus, V. (1988). Design for Northern Climates: Cold-Climate Planning and Environmental Design. Van Nostrand Reinhold Company.
[42] Pressman, N. E. (1996). Sustainable winter cities: Future directions for planning, policy and design. Atmospheric Environment, 30(3), 521-529. doi:10.1016/1352-2310(95)00012-7
[43] Pressman, N. (2005, February). Winter design guidelines. In: Welcoming Winter Conference. Halifax, Nova Scotia.
[44] Minneapolis City Coordinator. (2013). Minneapolis climate action plan: A roadmap to reducing citywide greenhouse gas emissions.
[45] Yan, S., He, X., Wang, X., Zeng, W., Li, C., & Cai, Y. (2016). Preliminary quantitative assessment study on climate carrying capacity of cities. Climate Change Research, 12(6), 476-483.
[46] Zhao, Z., Wu, X., & Dai, C. (n.d.). Research on the Establishment of an Urban Vulnerability Evaluation System Based on Climate Change. In 60 Years of Planning: Achievements and Challenges—Proceedings of the 2016 China Urban Planning Annual Conference (01 Urban Safety and Disaster Prevention Planning) (pp. 336-350). Urban Planning Society of China.
[47] Ministry of Housing and Urban-Rural Development of the PRC. (2014). The 13th Five-Year Plan for the Development and Utilization of Urban Underground Space.
[48] Beijing Institute of Environmental Health Design and Science. (2006). Technical Specification of Snow Remove Operation for City Road (CJJ/T 108—2006). China Architecture & Building Press.
[49] National Energy Administration. (2017). Planning of Clean Heating in Winter in Northern China (2017—2021).
[50] National Organ Affairs Administration & China Academy of Building Research. (2013). Technical Guidelines for the Comprehensive Improvement of Old Residential Areas of State Organs in China.
[51] Ministry of Housing and Urban-Rural Development of the PRC. (2016). National Garden City Standards. In National Garden City Series Standards.
[52] Ministry of Housing and Urban-Rural Development of the PRC. (2011). Code for Classification of Urban Land Use and Planning Standards of Development Land (GB50137—2011).
[53] Soil Conservation Service. (1998). TR-55 (Technical Release 55): Urban Hydrology for Small Watersheds.
[54] Ministry of Housing and Urban-Rural Development of the PRC. (2016). Standard for Urban Rail Transit Network Planning (GB/T50546—2018). China Architecture & Building Press.
[55] General Administration of Quality Supervision, Inspection and Quarantine of the PRC. (2016). Specification for Urban Traffic Performance Evaluation (GB/T33171—2016).
[56] London Borough of Hammersmith & Fulham. (2018). Hammersmith & Fulham Local Plan.
[57] Ministry of Housing and Urban-Rural Development of the PRC. (2018). Design Standard for Energy Efficiency of Residential Buildings in Severe Cold and Cold Zones (JGJ26—2018). China Architecture & Building Press.
[58] Housing and Urban-Rural Construction Department of Shandong Province. (2018). Guidance Opinions on Strengthening Vertical Planting in Shandong Province.
[59] Beijing Climate Centre. (2015). Technical Guide for Urban Ventilation Channel Planning.
[60] State Council of the PRC (2000). Implementing Regulations of the Forestry Law of the People’s Republic of China.
[61] General Office of the People’s Government of Heilongjiang Province. (2017). Comprehensive Disaster Prevention and Reduction Planning of Heilongjiang Province (2016—2020).
[62] Central Meteorological Office. (2010). Measures for the Issuance of Meteorological Disaster Early Warning by the Central Meteorological Office.
[63] Ministry of Housing and Urban-Rural Development of the PRC. (2017). 13th Five-Year Plan for Building Energy Conservation and Green Building Development.
[64] Lichfield, N. (1970). Evaluation methodology of urban and regional plans: A review. Regional Studies, 4(2), 151-165. doi:10.1080/09595237000185201
[65] Xu, S. (1988). Principles of Hierarchical Analysis—Practical Decision Making Method (pp. 10-60). Tianjin University Press.
[66] Liu, J., Tan, Y., & Cai, H. (2005). The study of the methods of the linear combination weighting for multiple attribute decision-making. Journal of National University of Defense Technology, 27(4), 121.
[67] Huang, M., Tang, B., & Ren, J. (1991). Multivariate analysis approach to integrated evaluation. Journal of Applied Statistics and Management, (1), 27-31. doi:10.13860/j.cnki.sltj.1991.01.007
[68] Leng, H. (2009). Study of the Habitability of Cold Urban Environments. China Architecture & Building Press.
[69] Jiang, C., & Leng, H. (2016). A survey of the use of skyways and its inspirations for city planning in cold regions—A case study of minneapolis, USA. Architectural Journal, 579(12), 83-87.
[70] Harbin Municipal People’s Government. (2016). Harbin City Special Action Plan for Air Pollution Prevention and Control (2016—2018).
[71] Harbin Municipal People’s Government. (2019). Harbin Clean Heating Implementation Plan (2019—2021).
[72] Harbin Municipal People’s Government. (2022). The 14th Five-year Plan for Ecological Environment Protection in Harbin (Draft for comments).
[73] Traffic Analysis Report for Major Cities in China. (2018). Retrieved from the official website of Gaode autonavi.
[74] Harbin Municipal People’s Government. (2018). Planning of Ventilation Channel in Harbin.
[75] Harbin Municipal People’s Government. (2022). Harbin Contingency Plan.
[76] Zeng, H., & Huang, S. (2007). Research on spatial data interpolation based on Kriging interpolation. Engineering of Surveying and Mapping, 16(5), 5-10.
[77] Feng, Z. (1995). Optimal interpolation of spatial data (kriging method) and its conception for application in GIS. Science of Surveying and Mapping, (3), 22-26.
[78] Yu, T., Jiang, C., Leng, H., & Yuan, Q. (2022). Rural vulnerability assessment for territorial governance in rural areas: Theoretical consideration, empirical study, and application prospect. City Planning Review, 46(3), 45-53. doi:10.11819/cpr20211725a
[79] Chen, K., & Tang, Y. (2019). Identification of urban areas vulnerable to heat waves and coping strategies: A case study of Beijing central city. City Planning Review, 43(12), 37-44, 77. doi:10.11819/cpr20191206a
[80] Ministry of Natural Resources of the People’s Republic of China. (2019). Notice of Territorial Spatial Planning by the Ministry of Natural Resources of the People’s Republic of China.
[81] Cheng, C., & Hong, L. (2014). Exploration of Urban Planning Response Strategies Based on Regional Climate Change Hohhot East New District Planning as an Example. In Urban and Rural Governance and Planning Reform—Proceedings of the 2014 China Urban Planning Annual Conference (01 Urban Safety and Disaster Prevention Planning). China Architecture & Building Press.
[82] Hong, L., Hua, X., & Cai, Z. (2013). Urban planning responses to climate change. Urban Problems, (7), 18-25. doi:10.13239/j.bjsshkxy.cswt.2013.07.001
[83] Zheng, Y., Shi, W. (2016). Interpretation and Implementation of the Urban Action Plan for Adaptation to Climate Change. In W. Wang, & G. Zheng (Eds.), Annual Report on Actions to Address Climate Change (2016) (pp. 177-188). Social Sciences Academic Press.


本文引用格式 / PLEASE CITE THIS ARTICLE AS

Jiang, C., Leng, H., & Yuan, Q. (2022). Construction of climate adaptability evaluation indicator system for urban spaces in the severe cold zones of China—A case study on the central area of Harbin. Landscape Architecture Frontiers, 10(4), 45‒69. doi:10.15302/J-LAF-1-020062



封面图片来源 © 东北网记者 安泽
编辑 | 周佳怡,田乐
翻译 | 周佳怡,蒋存妍,田乐
制作 | 田乐,高雨婷



版权声明:本文版权归原作者所有,请勿以景观中国编辑版本转载。如有侵犯您的权益请及时联系,我们将第一时间删除。

投稿邮箱:info@landscape.cn

项目咨询:18510568018(微信同号)

打赏
  • 给Ta打个赏

0

发表评论

您好,登录后才可以评论哦!

热门评论

相关文章